A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds

نویسندگان

  • Tushar Kumeria
  • Luke Parkinson
  • Dusan Losic
چکیده

This work presents the use of nanoporous anodic aluminium oxide [AAO] for reflective interferometric sensing of volatile sulphur compounds and hydrogen sulphide [H2S] gas. Detection is based on changes of the interference signal from AAO porous layer as a result of specific adsorption of gas molecules with sulphur functional groups on a gold-coated surface. A nanoporous AAO sensing platform with optimised pore diameters (30 nm) and length (4 µm) was fabricated using a two-step anodization process in 0.3 M oxalic, followed by coating with a thin gold film (8 nm). The AAO is assembled in a specially designed microfluidic chip supported with a miniature fibre optic system that is able to measure changes of reflective interference signal (Fabry-Perrot fringes). When the sensor is exposed to a small concentration of H2S gas, the interference signal showed a concentration-dependent wavelength shifting of the Fabry-Perot interference fringe spectrum, as a result of the adsorption of H2S molecules on the Au surface and changes in the refractive index of the AAO. A practical biomedical application of reflectometric interference spectroscopy [RIfS] Au-AAO sensor for malodour measurement was successfully shown. The RIfS method based on a nanoporous AAO platform is simple, easy to miniaturise, inexpensive and has great potential for development of gas sensing devices for a range of medical and environmental applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

A fiber optic intrinsic Fabry-Perot interferometric (IFPI) chemical sensor was developed by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolite synthesized on the cleaved endface of a single mode fiber. The sensor operated by monitoring the optical thickness changes of the zeolite thin film caused by the adsorption of organic molecules into the zeolite channels. The optical th...

متن کامل

Comparison of various detection limit estimates for volatile sulphur compounds by gas chromatography with pulsed flame photometric detection.

This paper addresses the variations that presently exist regarding the definition, determination, and reporting of detection limits for volatile sulphur compounds by gas chromatography with pulsed flame photometric detection (GC-PFPD). Gas standards containing hydrogen sulphide (H(2)S), carbonyl sulphide (COS), sulphur dioxide (SO(2)), methyl mercaptan (CH(3)SH), dimethyl sulphide (DMS), carbon...

متن کامل

Design of a Fluorescent Sensor Based on the Polydopamine Nanoparticles for Detection of Gallic Acid

Background: Gallic acid (GA) is one of the polyphenolic compounds with antioxidant, antimicrobial and radical scavenging activities, which plays a main role in human health against cancer and cardiovascular diseases. GA concentration can be quantitatively measured in food, medicinal plants and body fluids. Materials and Methods: In this study, MnO2 nanosheets were prepared by reducing potassium...

متن کامل

Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric r...

متن کامل

On-chip Optofluidic Ring Resonator Sensor for Micro-scale Gas Chromatography

The design, fabrication and preliminary performance assessment of a new vapor sensor comprising a microfabricated optofluidic ring resonator (μOFRR) and its application to microscale gas chromatographic (μGC) detection of volatile organic compounds (VOC) are presented. The μOFRR combines vapor sensing and fluidic transport functions in a micro-fabricated whispering gallery mode (WGM) resonator....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011